3.1.23 \(\int \frac {d+e x+f x^2+g x^3+h x^4}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=290 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {-c (2 a h+b f)+b^2 h+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-\frac {-2 a c h+b^2 h-b c f+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {(2 c e-b g) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c \sqrt {b^2-4 a c}}+\frac {g \log \left (a+b x^2+c x^4\right )}{4 c}+\frac {h x}{c} \]

________________________________________________________________________________________

Rubi [A]  time = 0.73, antiderivative size = 290, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {1673, 1676, 1166, 205, 1247, 634, 618, 206, 628} \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {-c (2 a h+b f)+b^2 h+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-\frac {-2 a c h+b^2 h-b c f+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {(2 c e-b g) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c \sqrt {b^2-4 a c}}+\frac {g \log \left (a+b x^2+c x^4\right )}{4 c}+\frac {h x}{c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(a + b*x^2 + c*x^4),x]

[Out]

(h*x)/c + ((c*f - b*h + (2*c^2*d + b^2*h - c*(b*f + 2*a*h))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((c*f - b*h - (2*c^2*d - b*c*f + b^2
*h - 2*a*c*h)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqr
t[b + Sqrt[b^2 - 4*a*c]]) - ((2*c*e - b*g)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c*Sqrt[b^2 - 4*a*c]) +
 (g*Log[a + b*x^2 + c*x^4])/(4*c)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1676

Int[(Pq_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^2 + c*x^4), x], x
] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && Expon[Pq, x^2] > 1

Rubi steps

\begin {align*} \int \frac {d+e x+f x^2+g x^3+h x^4}{a+b x^2+c x^4} \, dx &=\int \frac {x \left (e+g x^2\right )}{a+b x^2+c x^4} \, dx+\int \frac {d+f x^2+h x^4}{a+b x^2+c x^4} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {e+g x}{a+b x+c x^2} \, dx,x,x^2\right )+\int \left (\frac {h}{c}+\frac {c d-a h+(c f-b h) x^2}{c \left (a+b x^2+c x^4\right )}\right ) \, dx\\ &=\frac {h x}{c}+\frac {\int \frac {c d-a h+(c f-b h) x^2}{a+b x^2+c x^4} \, dx}{c}+\frac {g \operatorname {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c}+\frac {(2 c e-b g) \operatorname {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c}\\ &=\frac {h x}{c}+\frac {g \log \left (a+b x^2+c x^4\right )}{4 c}-\frac {(2 c e-b g) \operatorname {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 c}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c}\\ &=\frac {h x}{c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {(2 c e-b g) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c \sqrt {b^2-4 a c}}+\frac {g \log \left (a+b x^2+c x^4\right )}{4 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.50, size = 383, normalized size = 1.32 \begin {gather*} \frac {\frac {2 \sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (c \left (f \sqrt {b^2-4 a c}-2 a h-b f\right )+b h \left (b-\sqrt {b^2-4 a c}\right )+2 c^2 d\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-c \left (f \sqrt {b^2-4 a c}+2 a h+b f\right )+b h \left (\sqrt {b^2-4 a c}+b\right )+2 c^2 d\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {\sqrt {c} \left (g \left (\sqrt {b^2-4 a c}-b\right )+2 c e\right ) \log \left (\sqrt {b^2-4 a c}-b-2 c x^2\right )}{\sqrt {b^2-4 a c}}+\frac {\sqrt {c} \left (g \left (\sqrt {b^2-4 a c}+b\right )-2 c e\right ) \log \left (\sqrt {b^2-4 a c}+b+2 c x^2\right )}{\sqrt {b^2-4 a c}}+4 \sqrt {c} h x}{4 c^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(a + b*x^2 + c*x^4),x]

[Out]

(4*Sqrt[c]*h*x + (2*Sqrt[2]*(2*c^2*d + b*(b - Sqrt[b^2 - 4*a*c])*h + c*(-(b*f) + Sqrt[b^2 - 4*a*c]*f - 2*a*h))
*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (2
*Sqrt[2]*(2*c^2*d + b*(b + Sqrt[b^2 - 4*a*c])*h - c*(b*f + Sqrt[b^2 - 4*a*c]*f + 2*a*h))*ArcTan[(Sqrt[2]*Sqrt[
c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*(2*c*e + (-b +
Sqrt[b^2 - 4*a*c])*g)*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] + (Sqrt[c]*(-2*c*e + (b + Sqrt[
b^2 - 4*a*c])*g)*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*c^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d+e x+f x^2+g x^3+h x^4}{a+b x^2+c x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(a + b*x^2 + c*x^4),x]

[Out]

IntegrateAlgebraic[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(a + b*x^2 + c*x^4), x]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [B]  time = 4.91, size = 5201, normalized size = 17.93

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

h*x/c + 1/4*g*log(abs(c*x^4 + b*x^2 + a))/c + 1/8*((2*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5 - sqrt(2)*sqrt(b^2 -
 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*
b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^3 -
 sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sq
rt(b^2 - 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c^4)*c^2*f - (2*b^5*c^2 - 16*a*b^3*c^3
+ 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c - 1
6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c -
 sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^
3)*c^2*h + 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^
2*c^4 - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*b^4*c^4 + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c
)*c)*a^2*c^5 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^5 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2
*c^5 - 16*a*b^2*c^5 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^6 + 32*a^2*c^6 - 2*(b^2 - 4*a*c)*b^2*c^4 +
 8*(b^2 - 4*a*c)*a*c^5)*d*abs(c) - 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c -
 sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*a*b^4*c^3 + 16*sqr
t(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - 16*a^2*b^2*c^4 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^5
+ 32*a^3*c^5 - 2*(b^2 - 4*a*c)*a*b^2*c^3 + 8*(b^2 - 4*a*c)*a^2*c^4)*h*abs(c) + 2*(2*b^3*c^6 - 8*a*b*c^7 - sqrt
(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^
2 - 4*a*c)*c)*a*b*c^5 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^5 - sqrt(2)*sqrt(b^2
 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^6 - 2*(b^2 - 4*a*c)*b*c^6)*d - (2*b^4*c^5 - 8*a*b^2*c^6 - sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2
- 4*a*c)*c)*a*b^2*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 - sqrt(2)*sqrt(b^2
 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^5 - 2*(b^2 - 4*a*c)*b^2*c^5)*f + (2*b^5*c^4 - 12*a*b^3*c^5 + 1
6*a^2*b*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^
3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b
*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sq
rt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*
b*c^5)*h)*arctan(2*sqrt(1/2)*x/sqrt((b*c^3 + sqrt(b^2*c^6 - 4*a*c^7))/c^4))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*
b^3*c^4 + 16*a^3*c^5 + 8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6)*c^2) - 1/8*((2*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5
 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq
rt(b^2 - 4*a*c)*c)*a*b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2
- 4*a*c)*c)*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 -
 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c^4)*c^2*f - (2*b^
5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2
- 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^
2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*
c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8
*(b^2 - 4*a*c)*a*b*c^3)*c^2*h - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b*c + sqrt
(b^2 - 4*a*c)*c)*a*b^2*c^4 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 - 2*b^4*c^4 + 16*sqrt(2)*sqrt(b
*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 + sqrt(2)*sqrt(b*c + sqr
t(b^2 - 4*a*c)*c)*b^2*c^5 + 16*a*b^2*c^5 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^6 - 32*a^2*c^6 + 2*(b
^2 - 4*a*c)*b^2*c^4 - 8*(b^2 - 4*a*c)*a*c^5)*d*abs(c) + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 -
 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 -
 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*
a^2*b*c^4 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 + 16*a^2*b^2*c^4 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2
 - 4*a*c)*c)*a^2*c^5 - 32*a^3*c^5 + 2*(b^2 - 4*a*c)*a*b^2*c^3 - 8*(b^2 - 4*a*c)*a^2*c^4)*h*abs(c) + 2*(2*b^3*c
^6 - 8*a*b*c^7 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 4*sqrt(2)*sqrt(b^2 - 4*a*
c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c
^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^6 - 2*(b^2 - 4*a*c)*b*c^6)*d - (2*b^4*c^5 -
 8*a*b^2*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c
^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^5 - 2*(b^2 - 4*a*c)*b^2*c^5)*f + (2*b^5*c
^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c^2 + 6*sqrt(
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b
^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 4*sqrt(2)*sqr
t(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a
*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^2 - 4*a*c)*b^3*c^4
 + 4*(b^2 - 4*a*c)*a*b*c^5)*h)*arctan(2*sqrt(1/2)*x/sqrt((b*c^3 - sqrt(b^2*c^6 - 4*a*c^7))/c^4))/((a*b^4*c^3 -
 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 + 8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6)*c^2) - 1/16*((b^6 - 8*a*b^4*c
 - 2*b^5*c + 16*a^2*b^2*c^2 + 8*a*b^3*c^2 + b^4*c^2 - 4*a*b^2*c^3 - (b^5 - 8*a*b^3*c - 2*b^4*c + 16*a^2*b*c^2
+ 8*a*b^2*c^2 + b^3*c^2 - 4*a*b*c^3)*sqrt(b^2 - 4*a*c))*g*abs(c) - 2*(b^5*c - 8*a*b^3*c^2 - 2*b^4*c^2 + 16*a^2
*b*c^3 + 8*a*b^2*c^3 + b^3*c^3 - 4*a*b*c^4 - (b^4*c - 8*a*b^2*c^2 - 2*b^3*c^2 + 16*a^2*c^3 + 8*a*b*c^3 + b^2*c
^3 - 4*a*c^4)*sqrt(b^2 - 4*a*c))*abs(c)*e + (b^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 +
b^4*c^3 - 4*a*b^2*c^4 + (b^5*c - 4*a*b^3*c^2 - 2*b^4*c^2 + b^3*c^3)*sqrt(b^2 - 4*a*c))*g - 2*(b^5*c^2 - 8*a*b^
3*c^3 - 2*b^4*c^3 + 16*a^2*b*c^4 + 8*a*b^2*c^4 + b^3*c^4 - 4*a*b*c^5 - (b^4*c^2 - 4*a*b^2*c^3 - 2*b^3*c^3 + b^
2*c^4)*sqrt(b^2 - 4*a*c))*e)*log(x^2 + 1/2*(b*c^3 + sqrt(b^2*c^6 - 4*a*c^7))/c^4)/((a*b^4 - 8*a^2*b^2*c - 2*a*
b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*abs(c)) - 1/16*((b^6 - 8*a*b^4*c - 2*b^5*c + 16*
a^2*b^2*c^2 + 8*a*b^3*c^2 + b^4*c^2 - 4*a*b^2*c^3 + (b^5 - 8*a*b^3*c - 2*b^4*c + 16*a^2*b*c^2 + 8*a*b^2*c^2 +
b^3*c^2 - 4*a*b*c^3)*sqrt(b^2 - 4*a*c))*g*abs(c) - 2*(b^5*c - 8*a*b^3*c^2 - 2*b^4*c^2 + 16*a^2*b*c^3 + 8*a*b^2
*c^3 + b^3*c^3 - 4*a*b*c^4 + (b^4*c - 8*a*b^2*c^2 - 2*b^3*c^2 + 16*a^2*c^3 + 8*a*b*c^3 + b^2*c^3 - 4*a*c^4)*sq
rt(b^2 - 4*a*c))*abs(c)*e + (b^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^
2*c^4 + (b^5*c - 4*a*b^3*c^2 - 2*b^4*c^2 + b^3*c^3)*sqrt(b^2 - 4*a*c))*g - 2*(b^5*c^2 - 8*a*b^3*c^3 - 2*b^4*c^
3 + 16*a^2*b*c^4 + 8*a*b^2*c^4 + b^3*c^4 - 4*a*b*c^5 + (b^4*c^2 - 4*a*b^2*c^3 - 2*b^3*c^3 + b^2*c^4)*sqrt(b^2
- 4*a*c))*e)*log(x^2 + 1/2*(b*c^3 - sqrt(b^2*c^6 - 4*a*c^7))/c^4)/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c
^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*abs(c))

________________________________________________________________________________________

maple [B]  time = 0.04, size = 1132, normalized size = 3.90

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x)

[Out]

h*x/c-1/4*(-4*a*c+b^2)/(4*a*c-b^2)/c*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))*g+1/4*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*b/
c*g*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))-1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*e*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))-1
/2*(-4*a*c+b^2)/(4*a*c-b^2)/c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2
))*c)^(1/2)*c*x)*b*h+1/2*(-4*a*c+b^2)/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((
-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*f-(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2
)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*a*h+1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)/c*2^(1/2)/((-b
+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*b^2*h-1/2*(-4*a*c+b^2)^(1
/2)/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*
x)*b*f+c*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c
+b^2)^(1/2))*c)^(1/2)*c*x)*d-1/4*(-4*a*c+b^2)/(4*a*c-b^2)/c*ln(2*c*x^2+b+(-4*a*c+b^2)^(1/2))*g-1/4*(-4*a*c+b^2
)^(1/2)/(4*a*c-b^2)*b/c*g*ln(2*c*x^2+b+(-4*a*c+b^2)^(1/2))+1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*e*ln(2*c*x^2+b+(
-4*a*c+b^2)^(1/2))+1/2*(-4*a*c+b^2)/(4*a*c-b^2)/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+
(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*b*h-1/2*(-4*a*c+b^2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*ar
ctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*f-(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(
1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*a*h+1/2*(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)/c*2
^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*b^2*h-1/2*(-4*a*c
+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*b*f*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)
^(1/2)*c*x)+(-4*a*c+b^2)^(1/2)/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*d*arctan(2^(1/2)/((b+(-4
*a*c+b^2)^(1/2))*c)^(1/2)*c*x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

h*x/c + integrate((c*g*x^3 + c*e*x + (c*f - b*h)*x^2 + c*d - a*h)/(c*x^4 + b*x^2 + a), x)/c

________________________________________________________________________________________

mupad [B]  time = 1.75, size = 5981, normalized size = 20.62

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x + f*x^2 + g*x^3 + h*x^4)/(a + b*x^2 + c*x^4),x)

[Out]

symsum(log((x*(c^3*e^3 + c^3*d^2*g + b^3*e*h^2 - a*b*c*g^3 - 2*c^3*d*e*f + a*c^2*e*g^2 + b*c^2*e*f^2 - a*c^2*f
^2*g - 2*b*c^2*e^2*g + b^2*c*e*g^2 - a*b^2*g*h^2 + a^2*c*g*h^2 - 2*a*b*c*e*h^2 + 2*b*c^2*d*e*h - 2*a*c^2*d*g*h
 + 2*a*c^2*e*f*h - 2*b^2*c*e*f*h + 2*a*b*c*f*g*h))/c - root(128*a^2*b^2*c^4*z^4 - 16*a*b^4*c^3*z^4 - 256*a^3*c
^5*z^4 - 128*a^2*b^2*c^3*g*z^3 + 16*a*b^4*c^2*g*z^3 + 256*a^3*c^4*g*z^3 + 32*a^2*b*c^3*e*g*z^2 + 32*a^2*b*c^3*
d*h*z^2 - 8*a*b^3*c^2*e*g*z^2 - 8*a*b^3*c^2*d*h*z^2 + 16*a*b^2*c^3*d*f*z^2 + 8*a*b^4*c*f*h*z^2 - 48*a^2*b^2*c^
2*f*h*z^2 - 48*a^3*b*c^2*h^2*z^2 + 28*a^2*b^3*c*h^2*z^2 + 16*a^2*b*c^3*f^2*z^2 - 4*a*b^3*c^2*f^2*z^2 + 8*a*b^2
*c^3*e^2*z^2 + 64*a^3*c^3*f*h*z^2 - 64*a^2*c^4*d*f*z^2 - 4*a*b^4*c*g^2*z^2 + 16*a*b*c^4*d^2*z^2 + 40*a^2*b^2*c
^2*g^2*z^2 - 96*a^3*c^3*g^2*z^2 - 32*a^2*c^4*e^2*z^2 - 4*b^3*c^3*d^2*z^2 - 4*a*b^5*h^2*z^2 + 8*a^2*b^2*c*f*g*h
*z + 32*a^2*b*c^2*e*f*h*z - 8*a*b^2*c^2*d*f*g*z + 8*a*b^2*c^2*d*e*h*z - 8*a*b^3*c*e*f*h*z - 20*a^2*b^2*c*e*h^2
*z - 16*a^2*b*c^2*e*g^2*z - 4*a*b^2*c^2*e^2*g*z + 4*a*b^2*c^2*e*f^2*z - 32*a^3*c^2*f*g*h*z + 32*a^2*c^3*d*f*g*
z - 32*a^2*c^3*d*e*h*z + 16*a^3*b*c*g*h^2*z + 4*a*b^3*c*e*g^2*z - 16*a*b*c^3*d^2*g*z - 4*a^2*b^3*g*h^2*z + 16*
a^3*c^2*e*h^2*z + 16*a^2*c^3*e^2*g*z + 4*b^3*c^2*d^2*g*z - 16*a^2*c^3*e*f^2*z - 4*b^2*c^3*d^2*e*z - 4*a^2*b^2*
c*g^3*z + 4*a*b^4*e*h^2*z + 16*a*c^4*d^2*e*z + 16*a^3*c^2*g^3*z - 4*a^2*b*c*e*f*g*h - 4*a*b*c^2*d*e*f*g + 8*a^
2*c^2*d*e*g*h - 2*a^2*b*c*d*g^2*h + 2*a*b^2*c*e^2*f*h - 4*a*b^2*c*d*f^2*h - 2*a^2*b*c*d*f*h^2 - 2*a*b*c^2*d^2*
f*h + 2*a*b^2*c*d*f*g^2 - 2*a*b*c^2*d*e^2*h - 4*a^2*c^2*e^2*f*h + 2*a^2*b^2*e*g*h^2 + 4*a^2*c^2*e*f^2*g + 4*a^
2*c^2*d*f^2*h - 4*a^2*c^2*d*f*g^2 + 2*b^2*c^2*d^2*e*g + 3*a^2*b*c*e^2*h^2 + 4*a*b^2*c*d^2*h^2 + 3*a*b*c^2*d^2*
g^2 + 4*a^3*c*f*g^2*h - 4*a^3*c*e*g*h^2 + 2*b^3*c*d^2*f*h + 2*a*b^3*d*f*h^2 - 4*a*c^3*d^2*e*g + 2*a^2*b*c*f^3*
h + 4*a*c^3*d*e^2*f + 2*a^2*b*c*e*g^3 + 2*a*b*c^2*e^3*g + 2*a*b*c^2*d*f^3 + 2*a^3*b*f*h^3 + 4*a^3*c*d*h^3 + 4*
a*c^3*d^3*h + 2*b*c^3*d^3*f - a^2*b*c*f^2*g^2 - a*b^2*c*e^2*g^2 - a*b*c^2*e^2*f^2 - 6*a^2*c^2*d^2*h^2 - 2*a^2*
c^2*e^2*g^2 - 2*a^3*c*f^2*h^2 - 2*b^2*c^2*d^3*h - 2*a^2*b^2*d*h^3 - 2*a*c^3*d^2*f^2 - a^2*b^2*f^2*h^2 - b^2*c^
2*d^2*f^2 - a^3*b*g^2*h^2 - b^3*c*d^2*g^2 - a*b^3*e^2*h^2 - b*c^3*d^2*e^2 - b^4*d^2*h^2 - a^2*c^2*f^4 - a^3*c*
g^4 - a*c^3*e^4 - a^4*h^4 - c^4*d^4, z, k)*(root(128*a^2*b^2*c^4*z^4 - 16*a*b^4*c^3*z^4 - 256*a^3*c^5*z^4 - 12
8*a^2*b^2*c^3*g*z^3 + 16*a*b^4*c^2*g*z^3 + 256*a^3*c^4*g*z^3 + 32*a^2*b*c^3*e*g*z^2 + 32*a^2*b*c^3*d*h*z^2 - 8
*a*b^3*c^2*e*g*z^2 - 8*a*b^3*c^2*d*h*z^2 + 16*a*b^2*c^3*d*f*z^2 + 8*a*b^4*c*f*h*z^2 - 48*a^2*b^2*c^2*f*h*z^2 -
 48*a^3*b*c^2*h^2*z^2 + 28*a^2*b^3*c*h^2*z^2 + 16*a^2*b*c^3*f^2*z^2 - 4*a*b^3*c^2*f^2*z^2 + 8*a*b^2*c^3*e^2*z^
2 + 64*a^3*c^3*f*h*z^2 - 64*a^2*c^4*d*f*z^2 - 4*a*b^4*c*g^2*z^2 + 16*a*b*c^4*d^2*z^2 + 40*a^2*b^2*c^2*g^2*z^2
- 96*a^3*c^3*g^2*z^2 - 32*a^2*c^4*e^2*z^2 - 4*b^3*c^3*d^2*z^2 - 4*a*b^5*h^2*z^2 + 8*a^2*b^2*c*f*g*h*z + 32*a^2
*b*c^2*e*f*h*z - 8*a*b^2*c^2*d*f*g*z + 8*a*b^2*c^2*d*e*h*z - 8*a*b^3*c*e*f*h*z - 20*a^2*b^2*c*e*h^2*z - 16*a^2
*b*c^2*e*g^2*z - 4*a*b^2*c^2*e^2*g*z + 4*a*b^2*c^2*e*f^2*z - 32*a^3*c^2*f*g*h*z + 32*a^2*c^3*d*f*g*z - 32*a^2*
c^3*d*e*h*z + 16*a^3*b*c*g*h^2*z + 4*a*b^3*c*e*g^2*z - 16*a*b*c^3*d^2*g*z - 4*a^2*b^3*g*h^2*z + 16*a^3*c^2*e*h
^2*z + 16*a^2*c^3*e^2*g*z + 4*b^3*c^2*d^2*g*z - 16*a^2*c^3*e*f^2*z - 4*b^2*c^3*d^2*e*z - 4*a^2*b^2*c*g^3*z + 4
*a*b^4*e*h^2*z + 16*a*c^4*d^2*e*z + 16*a^3*c^2*g^3*z - 4*a^2*b*c*e*f*g*h - 4*a*b*c^2*d*e*f*g + 8*a^2*c^2*d*e*g
*h - 2*a^2*b*c*d*g^2*h + 2*a*b^2*c*e^2*f*h - 4*a*b^2*c*d*f^2*h - 2*a^2*b*c*d*f*h^2 - 2*a*b*c^2*d^2*f*h + 2*a*b
^2*c*d*f*g^2 - 2*a*b*c^2*d*e^2*h - 4*a^2*c^2*e^2*f*h + 2*a^2*b^2*e*g*h^2 + 4*a^2*c^2*e*f^2*g + 4*a^2*c^2*d*f^2
*h - 4*a^2*c^2*d*f*g^2 + 2*b^2*c^2*d^2*e*g + 3*a^2*b*c*e^2*h^2 + 4*a*b^2*c*d^2*h^2 + 3*a*b*c^2*d^2*g^2 + 4*a^3
*c*f*g^2*h - 4*a^3*c*e*g*h^2 + 2*b^3*c*d^2*f*h + 2*a*b^3*d*f*h^2 - 4*a*c^3*d^2*e*g + 2*a^2*b*c*f^3*h + 4*a*c^3
*d*e^2*f + 2*a^2*b*c*e*g^3 + 2*a*b*c^2*e^3*g + 2*a*b*c^2*d*f^3 + 2*a^3*b*f*h^3 + 4*a^3*c*d*h^3 + 4*a*c^3*d^3*h
 + 2*b*c^3*d^3*f - a^2*b*c*f^2*g^2 - a*b^2*c*e^2*g^2 - a*b*c^2*e^2*f^2 - 6*a^2*c^2*d^2*h^2 - 2*a^2*c^2*e^2*g^2
 - 2*a^3*c*f^2*h^2 - 2*b^2*c^2*d^3*h - 2*a^2*b^2*d*h^3 - 2*a*c^3*d^2*f^2 - a^2*b^2*f^2*h^2 - b^2*c^2*d^2*f^2 -
 a^3*b*g^2*h^2 - b^3*c*d^2*g^2 - a*b^3*e^2*h^2 - b*c^3*d^2*e^2 - b^4*d^2*h^2 - a^2*c^2*f^4 - a^3*c*g^4 - a*c^3
*e^4 - a^4*h^4 - c^4*d^4, z, k)*((x*(4*b^2*c^3*e - 8*b^3*c^2*g - 16*a*c^4*e + 32*a*b*c^3*g))/c - (4*b^2*c^3*d
+ 16*a^2*c^3*h - 16*a*c^4*d - 4*a*b^2*c^2*h)/c + (root(128*a^2*b^2*c^4*z^4 - 16*a*b^4*c^3*z^4 - 256*a^3*c^5*z^
4 - 128*a^2*b^2*c^3*g*z^3 + 16*a*b^4*c^2*g*z^3 + 256*a^3*c^4*g*z^3 + 32*a^2*b*c^3*e*g*z^2 + 32*a^2*b*c^3*d*h*z
^2 - 8*a*b^3*c^2*e*g*z^2 - 8*a*b^3*c^2*d*h*z^2 + 16*a*b^2*c^3*d*f*z^2 + 8*a*b^4*c*f*h*z^2 - 48*a^2*b^2*c^2*f*h
*z^2 - 48*a^3*b*c^2*h^2*z^2 + 28*a^2*b^3*c*h^2*z^2 + 16*a^2*b*c^3*f^2*z^2 - 4*a*b^3*c^2*f^2*z^2 + 8*a*b^2*c^3*
e^2*z^2 + 64*a^3*c^3*f*h*z^2 - 64*a^2*c^4*d*f*z^2 - 4*a*b^4*c*g^2*z^2 + 16*a*b*c^4*d^2*z^2 + 40*a^2*b^2*c^2*g^
2*z^2 - 96*a^3*c^3*g^2*z^2 - 32*a^2*c^4*e^2*z^2 - 4*b^3*c^3*d^2*z^2 - 4*a*b^5*h^2*z^2 + 8*a^2*b^2*c*f*g*h*z +
32*a^2*b*c^2*e*f*h*z - 8*a*b^2*c^2*d*f*g*z + 8*a*b^2*c^2*d*e*h*z - 8*a*b^3*c*e*f*h*z - 20*a^2*b^2*c*e*h^2*z -
16*a^2*b*c^2*e*g^2*z - 4*a*b^2*c^2*e^2*g*z + 4*a*b^2*c^2*e*f^2*z - 32*a^3*c^2*f*g*h*z + 32*a^2*c^3*d*f*g*z - 3
2*a^2*c^3*d*e*h*z + 16*a^3*b*c*g*h^2*z + 4*a*b^3*c*e*g^2*z - 16*a*b*c^3*d^2*g*z - 4*a^2*b^3*g*h^2*z + 16*a^3*c
^2*e*h^2*z + 16*a^2*c^3*e^2*g*z + 4*b^3*c^2*d^2*g*z - 16*a^2*c^3*e*f^2*z - 4*b^2*c^3*d^2*e*z - 4*a^2*b^2*c*g^3
*z + 4*a*b^4*e*h^2*z + 16*a*c^4*d^2*e*z + 16*a^3*c^2*g^3*z - 4*a^2*b*c*e*f*g*h - 4*a*b*c^2*d*e*f*g + 8*a^2*c^2
*d*e*g*h - 2*a^2*b*c*d*g^2*h + 2*a*b^2*c*e^2*f*h - 4*a*b^2*c*d*f^2*h - 2*a^2*b*c*d*f*h^2 - 2*a*b*c^2*d^2*f*h +
 2*a*b^2*c*d*f*g^2 - 2*a*b*c^2*d*e^2*h - 4*a^2*c^2*e^2*f*h + 2*a^2*b^2*e*g*h^2 + 4*a^2*c^2*e*f^2*g + 4*a^2*c^2
*d*f^2*h - 4*a^2*c^2*d*f*g^2 + 2*b^2*c^2*d^2*e*g + 3*a^2*b*c*e^2*h^2 + 4*a*b^2*c*d^2*h^2 + 3*a*b*c^2*d^2*g^2 +
 4*a^3*c*f*g^2*h - 4*a^3*c*e*g*h^2 + 2*b^3*c*d^2*f*h + 2*a*b^3*d*f*h^2 - 4*a*c^3*d^2*e*g + 2*a^2*b*c*f^3*h + 4
*a*c^3*d*e^2*f + 2*a^2*b*c*e*g^3 + 2*a*b*c^2*e^3*g + 2*a*b*c^2*d*f^3 + 2*a^3*b*f*h^3 + 4*a^3*c*d*h^3 + 4*a*c^3
*d^3*h + 2*b*c^3*d^3*f - a^2*b*c*f^2*g^2 - a*b^2*c*e^2*g^2 - a*b*c^2*e^2*f^2 - 6*a^2*c^2*d^2*h^2 - 2*a^2*c^2*e
^2*g^2 - 2*a^3*c*f^2*h^2 - 2*b^2*c^2*d^3*h - 2*a^2*b^2*d*h^3 - 2*a*c^3*d^2*f^2 - a^2*b^2*f^2*h^2 - b^2*c^2*d^2
*f^2 - a^3*b*g^2*h^2 - b^3*c*d^2*g^2 - a*b^3*e^2*h^2 - b*c^3*d^2*e^2 - b^4*d^2*h^2 - a^2*c^2*f^4 - a^3*c*g^4 -
 a*c^3*e^4 - a^4*h^4 - c^4*d^4, z, k)*x*(8*b^3*c^3 - 32*a*b*c^4))/c) - (4*b*c^3*d*e + 8*a*c^3*d*g - 8*a*c^3*e*
f - 4*b^2*c^2*d*g - 8*a^2*c^2*g*h + 4*a*b*c^2*e*h + 4*a*b*c^2*f*g)/c + (x*(4*c^4*d^2 + 2*b^4*h^2 - 4*a*c^3*f^2
 - 2*b*c^3*e^2 + 2*b^3*c*g^2 + 2*b^2*c^2*f^2 + 4*a^2*c^2*h^2 - 4*b*c^3*d*f - 8*a*c^3*d*h + 8*a*c^3*e*g - 4*b^3
*c*f*h - 10*a*b*c^2*g^2 - 8*a*b^2*c*h^2 + 4*b^2*c^2*d*h + 12*a*b*c^2*f*h))/c) - (a*c^2*f^3 - a^2*b*h^3 - c^3*d
*e^2 + c^3*d^2*f - b^3*d*h^2 + a*c^2*d*g^2 - b*c^2*d*f^2 - b^2*c*d*g^2 + a*b^2*f*h^2 + a*c^2*e^2*h - b*c^2*d^2
*h + a^2*c*f*h^2 - a^2*c*g^2*h + 2*a*b*c*d*h^2 + a*b*c*f*g^2 - 2*a*b*c*f^2*h + 2*b*c^2*d*e*g - 2*a*c^2*d*f*h -
 2*a*c^2*e*f*g + 2*b^2*c*d*f*h)/c)*root(128*a^2*b^2*c^4*z^4 - 16*a*b^4*c^3*z^4 - 256*a^3*c^5*z^4 - 128*a^2*b^2
*c^3*g*z^3 + 16*a*b^4*c^2*g*z^3 + 256*a^3*c^4*g*z^3 + 32*a^2*b*c^3*e*g*z^2 + 32*a^2*b*c^3*d*h*z^2 - 8*a*b^3*c^
2*e*g*z^2 - 8*a*b^3*c^2*d*h*z^2 + 16*a*b^2*c^3*d*f*z^2 + 8*a*b^4*c*f*h*z^2 - 48*a^2*b^2*c^2*f*h*z^2 - 48*a^3*b
*c^2*h^2*z^2 + 28*a^2*b^3*c*h^2*z^2 + 16*a^2*b*c^3*f^2*z^2 - 4*a*b^3*c^2*f^2*z^2 + 8*a*b^2*c^3*e^2*z^2 + 64*a^
3*c^3*f*h*z^2 - 64*a^2*c^4*d*f*z^2 - 4*a*b^4*c*g^2*z^2 + 16*a*b*c^4*d^2*z^2 + 40*a^2*b^2*c^2*g^2*z^2 - 96*a^3*
c^3*g^2*z^2 - 32*a^2*c^4*e^2*z^2 - 4*b^3*c^3*d^2*z^2 - 4*a*b^5*h^2*z^2 + 8*a^2*b^2*c*f*g*h*z + 32*a^2*b*c^2*e*
f*h*z - 8*a*b^2*c^2*d*f*g*z + 8*a*b^2*c^2*d*e*h*z - 8*a*b^3*c*e*f*h*z - 20*a^2*b^2*c*e*h^2*z - 16*a^2*b*c^2*e*
g^2*z - 4*a*b^2*c^2*e^2*g*z + 4*a*b^2*c^2*e*f^2*z - 32*a^3*c^2*f*g*h*z + 32*a^2*c^3*d*f*g*z - 32*a^2*c^3*d*e*h
*z + 16*a^3*b*c*g*h^2*z + 4*a*b^3*c*e*g^2*z - 16*a*b*c^3*d^2*g*z - 4*a^2*b^3*g*h^2*z + 16*a^3*c^2*e*h^2*z + 16
*a^2*c^3*e^2*g*z + 4*b^3*c^2*d^2*g*z - 16*a^2*c^3*e*f^2*z - 4*b^2*c^3*d^2*e*z - 4*a^2*b^2*c*g^3*z + 4*a*b^4*e*
h^2*z + 16*a*c^4*d^2*e*z + 16*a^3*c^2*g^3*z - 4*a^2*b*c*e*f*g*h - 4*a*b*c^2*d*e*f*g + 8*a^2*c^2*d*e*g*h - 2*a^
2*b*c*d*g^2*h + 2*a*b^2*c*e^2*f*h - 4*a*b^2*c*d*f^2*h - 2*a^2*b*c*d*f*h^2 - 2*a*b*c^2*d^2*f*h + 2*a*b^2*c*d*f*
g^2 - 2*a*b*c^2*d*e^2*h - 4*a^2*c^2*e^2*f*h + 2*a^2*b^2*e*g*h^2 + 4*a^2*c^2*e*f^2*g + 4*a^2*c^2*d*f^2*h - 4*a^
2*c^2*d*f*g^2 + 2*b^2*c^2*d^2*e*g + 3*a^2*b*c*e^2*h^2 + 4*a*b^2*c*d^2*h^2 + 3*a*b*c^2*d^2*g^2 + 4*a^3*c*f*g^2*
h - 4*a^3*c*e*g*h^2 + 2*b^3*c*d^2*f*h + 2*a*b^3*d*f*h^2 - 4*a*c^3*d^2*e*g + 2*a^2*b*c*f^3*h + 4*a*c^3*d*e^2*f
+ 2*a^2*b*c*e*g^3 + 2*a*b*c^2*e^3*g + 2*a*b*c^2*d*f^3 + 2*a^3*b*f*h^3 + 4*a^3*c*d*h^3 + 4*a*c^3*d^3*h + 2*b*c^
3*d^3*f - a^2*b*c*f^2*g^2 - a*b^2*c*e^2*g^2 - a*b*c^2*e^2*f^2 - 6*a^2*c^2*d^2*h^2 - 2*a^2*c^2*e^2*g^2 - 2*a^3*
c*f^2*h^2 - 2*b^2*c^2*d^3*h - 2*a^2*b^2*d*h^3 - 2*a*c^3*d^2*f^2 - a^2*b^2*f^2*h^2 - b^2*c^2*d^2*f^2 - a^3*b*g^
2*h^2 - b^3*c*d^2*g^2 - a*b^3*e^2*h^2 - b*c^3*d^2*e^2 - b^4*d^2*h^2 - a^2*c^2*f^4 - a^3*c*g^4 - a*c^3*e^4 - a^
4*h^4 - c^4*d^4, z, k), k, 1, 4) + (h*x)/c

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x**4+g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________